【当前独家】GAN卷土重来:10亿参数的GigaGAN效果堪比扩散模型

(相关资料图) 点蓝色字关注“机器学习算法工程师” 设为星标,干货直达! 自从 DALL·E 2 之后,在图像生成方面扩散模型替代GAN成了主流方向,比如开源的文生图模型stable diffusion也是基于dif...

20220610101708847.jpg(相关资料图)

点蓝色字关注“机器学习算法工程师”

设为星标,干货直达!

自从 DALL·E 2 之后,在图像生成方面扩散模型替代GAN成了主流方向,比如开源的文生图模型stable diffusion也是基于diffusion架构的。近日, Adobe研究者在论文Scaling up GANs for Text-to-Image Synthesis提出了参数量为10亿(1B)的GAN模型:GigaGAN,其在文生图效果上接近扩散模型效果,而且推理速度更快,生成512x512大小图像只需要0.13s,生成16M像素图像只需要 3.66s。同时GigaGAN也支持latent空间的编辑功能,比如latent插值,风格混合,以及向量运算等。

GigaGAN改进了StyleGAN架构,采用两阶段训练策略:一个是64x64的图像生成器和一个512x512的图像超分2器,其图像生成器架构如下所示(这里也是采用CLIP text encoder来引入text condition):GigaGAN在 LAION2B-en和 COYO-700M数据集上训练,其在COCO数据集上的FID达到9.09,超过stable diffusion 1.5,推理速度比stable diffusion快20倍多(2.9s vs 0.13s):GigaGAN除了文生图能力,还可以实现可控的合成,比如风格混合,如下图所示:更多效果图和技术细节见论文https://arxiv.org/abs/2303.05511和网站https://mingukkang.github.io/GigaGAN/

  • 发表于 2023-05-10 12:52:36
  • 阅读 ( 2290 )
  • 分类:教育培训

0 条评论

请先 登录 后评论
天天趣闻站
天天趣闻站

440 篇文章

感兴趣的文章

相关问题