二项分布的方差 x~bn

二项分布的方差公式:D=np(1-p)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。 概率论,是研究...

二项分布的方差公式:D=np(1-p)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

x~b(n

X~B(n,p)是二项分布,即事件发生的概率为p,重复n次。

它的期望E=np,方差为np(1-p)。

在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。

扩展资料:

伯努利分布是二项分布在n= 1时的特殊情况。X~ B(1,p)与X~ Bern(p)的意思是相同的。相反,任何二项分布B(n,p)都是n次独立伯努利试验的和,每次试验成功的概率为p。

伯努利分布指的是对于随机变量X有, 参数为p(0p1),如果它分别以概率p和1-p取1和0为值。EX= p,DX=p(1-p)。伯努利试验成功的次数服从伯努利分布,参数p是试验成功的概率。伯努利分布是一个离散型机率分布,是N=1时二项分布的特殊情况。

参考资料来源:百度百科-伯努利分布

640c422c89a66.jpg

p)的期望和方差

六个常见分布的期望和方差:

1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。

2、二项分布,期望是np,方差是npq。

3、泊松分布,期望是p,方差是p。

4、指数分布,期望是1/p,方差是1/(p的平方)。

5、正态分布,期望是u,方差是的平方。

6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。

方差计算注意事项

协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的,结合下面的2理解,每个样本有很多特征,每个特征就是一个维度。

根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。

D(X)与E(X)公式

D(X)指方差,E(X)指期望。E(X)说简单点就是平均值,具体做法是求和然后除以数量。D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2。

1、设C为常数,则D(C)=0(常数无波动);

2、D(cx)=C2D(x)(常数平方提取);

证:

D(-X)=D(X),D(-2X)=4D(X)(方差无负值)

3、当X、Y相互独立时,故第三项为零。

统计学意义

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。

二项分布方差公式推导

二项分布的期望和方差公式推导如下:

1、二项分布求期望:

公式:如果r~ B(r,p),那么E(r)=np。

示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。E(r) = np = 4×0.25 = 1 (个),所以这四道题目预计猜对1道。

2、二项分布求方差:

公式:如果r~ B(r,p),那么Var(r)=npq。

示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。

Var(r)=npq = 4×0.25×0.75=0.75。

扩展资料:

由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。

设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n)。

因X(k)相互独立,所以期望:E(x)=E[X(1)+X(2)+X (3).....+ X(n)] = np。

方差:D(x)=D[X(1)+X(2)+X(3)....+ X(n)]= np(1- p)。

  • 发表于 2024-08-24 10:30:06
  • 阅读 ( 139 )
  • 分类:行业新闻

0 条评论

请先 登录 后评论
鲤财有道
鲤财有道

432 篇文章

感兴趣的文章

相关问题