过圆上一点的切线方程是(x₁-a)(x-a)+(y₁-b)(y-b)=r²。众所周知,圆x2+y2=r2上一点M(x0,y0)的切线方程为x0x+y0y=r2,它有着很优美的结构,本文将对它进行变式和引申,以探求其他更多优美的结论。
点P(x1,y1), 圆心为O(a,b),则(x1-a)²+(y1-b)²=r²直线OP的斜率为:k(OP)=(y1-b)/(x1-a) ,切线的斜率为:k=1/k(OP)=(x1-a)/(y1-b),切线方程为:y-y1=(x1-a)/(y1-b) ×(x-x1)。
圆的切线:
垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:
(1)经过切点垂直于过切点的半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
圆外一点的切线方程秒杀
既然是【公式】,当然能《直接》用。(但如果条件和《公式》所给的条件有区别,那就【不能】盲目】的《直接用》。需要对条件适当的处理!(你没有给出【具体的】题来,不能瞎说))
比如:一点P(x0,y0)在圆 x^2+y^2=r^2 上,则过P点的圆的切线就是:
x0x+y0y=r^2 。在具体的题中 x0、y0、r都是具体的值,【直接用】,在公式中代入这些值即可。但若 圆的方程【不是】x^2+y^2=r^2 的形式,那就应该进行【处理】,而【不能直接用】!你提问应该【亮】出具体 题 来,而不能这么 【泛泛而问】!
求圆外一点作圆的切线
1、经过圆上一点的圆的切线方程:
设P1(x1,y1)是圆 x^2+y^2=r^2上的一点,直线 m 是过P1的切线,则它的方程是:
x1x+y1y=r ^2。⑴
2、经过圆外一点的圆的切线方程:
设P0(x0,y0)是圆 x^2+y^2=r^2外的一点, m 是过P0点并且与圆相切的直线,
设定切点是P1(x1,y1).
解方程组:x1^2+y1^2=r^2和x0x1+y0y1=r^2,
就可以得出x1和y1的值,再由方程⑴,就可以求出圆外一点的圆的切线方程。
为什么两圆相减是公切线方程
两圆外切时,两圆的方程相减是内公切线的方程,这不难证明,但过程步骤很多,
方法是:你用代入法求出两圆的交点,只有一个,然后求切线斜率,与两圆心连线垂直,可求。
你应该记住这一结论,并运用好即可。